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Final Report for Time Series Forecasting 

Introduction 

 Time series forecasting is the process of looking at time-oriented data and making 

predictions about future data points1. It is an important process used in a variety of fields 

whenever future predictions are necessary, and there is a wide range of models that can be used 

to perform this analysis. Some models are built for time series forecasting, while others are 

applications of more general machine learning techniques. Different techniques have different 

strengths, such as working with seasonal trends. Additionally, there are different types of time 

series datasets. Some have covariates, which are other variables besides the timestamp that can 

aid in the prediction of certain data values. Others are multivariate sets, where multiple variables 

are predicted at once. In this project, I worked with these types of models and datasets to 

compare their performances and learn more about the area of time series forecasting. 

Existing Work 

 My intention with this project was to research existing work in the area and try to 

implement it myself. A paper written by De Gooijer and Hyndman describes work in the time 

series forecasting field over the last 25 years2. The paper discusses the history and development 

of different models and accuracy metrics, many of which are used in my work. Historically, 

ARIMA and Exponential Smoothing were two of the most important forecasting models, but as 

the machine learning field has developed, more complex deep learning models have gained 

popularity. 

 An example of specific work comes from a paper written by Chimmula and Zhang, 

which analyzed time series data for Covid-19 transmission3. In their work, they used a Long 

Short Term Memory (LSTM) recurrent neural network to make predictions. This type of deep-
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learning model seems to be used frequently in modern time series forecasting4,5. Therefore, I 

implemented an LSTM recurrent neural network model for every dataset I tested to ensure 

accurate comparisons between that model and others. 

Methods 

 I worked with these models using Python, specifically using the Darts library6, which 

provided the models and accuracy metrics used, as well as some of the datasets. Other Python 

packages include different models as well, such as SKTime7 and Pyflux8, in addition to libraries 

that are dedicated to a single model, such as Prophet9 and TSFresh10. In testing the models, I 

wrote functions that would first initialize the model, which frequently required parameter tuning 

and testing to ensure the best possible performance given the size and complexity of the dataset 

used. Some important parameters to tune included input and output chunk lengths, hidden layer 

size, number of layers, batch size, and forecast horizon length. Then, depending on the model, 

the training and validation sets would be normalized before the model was trained on the data. 

After the training, the model would make predictions on the validation set. Finally, it would 

graph the entire dataset, with the predictions laid on top, and with an accuracy metric as a title. 

 I successfully tested thirteen models in total, which were outlined in my initial project 

report. As a summary, the models I used are listed below, with explanations. 

1. ARIMA- Auto Regressive Integrated Moving Average11 

• This model is built specifically for time series forecasting, using the dataset’s 

previous values, as well as the models’ previous errors, to make predictions about 

future data points. 

2. VARIMA12 



 4 

• This model is similar to ARIMA, but it is generalized to multivariate datasets instead 

of just univariate ones. 

3. Exponential Smoothing13 

• This model also works similarly to ARIMA, except in how the dataset’s prior values 

are used. In ARIMA, all of the lags are weighted equally, but in exponential 

smoothing, their relevance to the prediction exponentially decreases as they get older, 

so more recent data points are weighted as more important to the model. 

4. Fast Fourier Transform14 

• This model uses a discrete Fourier transform to analyze the time series data. It takes 

in the time step data as input and generates the frequencies present in the dependent 

variable, which encodes information about the time series’ trend and seasonality. 

5. Four Theta15 

• This method creates two Theta lines, one that represents the series’ linear trend and 

one that represents its curvature. Depending on the value of the theta coefficient, the 

line can approximate long-term or short-term trends. After the predictions are 

generated from each Theta line, these forecasts are simply averaged together to 

generate the final prediction. 

6. Kalman Forecaster16 

• This model uses measurements, noise, and inaccuracies to produce estimates of the 

unknown variable. It is a recursive algorithm that updates weights given the 

uncertainties and errors of current estimates. 

7. TBATS- Trigonometric, Box-Cox, ARIMA, Trend, Seasonal17 
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• This method produces many models, using the different components that make up its 

name. For example, it will consider models with and without Box-Cox 

transformations, with and without a seasonal model, with and without trend damping, 

etc. After this, it will choose which model performed the best using the Akaike 

information criterion, which is an estimator of prediction error. 

8. Regression / Linear Regression18 

• This method builds a feature matrix using current and past observations and estimates 

a linear relationship between the matrix and the prediction variable. It can use both 

time-step features for more time-dependent data and lagged features for more serial-

dependent data (more dependent on past observations than time). 

9. Random Forest19 

• This model builds an ensemble of decision trees using slightly different datasets for 

each one. Predictions from each tree are averaged together to produce the final 

estimate. 

10. Recurrent Neural Network20 

• This works as an ordinary RNN, using memory blocks and backpropagation to 

produce predictions. Specifically, a Long Short Term Memory network was used, 

which uses a set of gated cells to keep track of previous inputs and manage 

information better, using input, output, and forget gates to categorize the importance 

of different data points and trends to the predictions. 

11. NBEATS- Neural Basis Expansion Analysis for interpretable Time Series forecasting21 

• This model requires a different definition of the training and validation sets. It begins 

with a small training set, tries to predict the next block of time, observes the actual 
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values, and remembers its error. Then it incorporates that block into the training set 

and runs again, predicting the next block. This continues until it has mapped the 

entire series, at which point it is equipped well to make future predictions. 

12. NHiTS- Neural Hierarchical Interpolation for Time Series forecasting22 

• This model is very similar to NBEATS, but it uses multi-rate sampling of the inputs. 

13. Temporal Fusion Transformer23 

• This is a Torch deep neural network architecture that works very well with covariates. 

I worked with these models over several datasets, depending on when the models were 

applicable. Additionally, I summarize below the different evaluation and accuracy metrics I 

used, which were also obtained from the Darts library6. 

1. Mean Absolute Percentage Error24 

• This metric sums together, for each data point, the ratio of the prediction and actual 

values, with the formula (actual – prediction) / actual. 

2. Mean Absolute Scaled Error25 

• This metric takes the mean absolute error of the forecast values and divides that by 

the mean absolute error of a naïve forecast that always predicts at time t whatever the 

value of the variable was at time t-1. 

3. Root Mean Square Error26 

• This is the square root of the mean square error, which is just the average of the 

squared errors of each prediction data point. 

4. Coefficient of Correlation27 
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• This is a general measurement of the relationship between two variables. In this case, 

it is used to measure the linear correlation between the prediction and the validation 

set. 

5. R2 Score28 

• This statistic measures the proportion of variance in the dependent variable that is 

explainable by the model and the independent variables. 

At first, the Mean Absolute Percentage Error was used to evaluate the models, but there 

were problems with that metric that are discussed later. The Root Mean Square Error was used 

instead to compare the performance of the models. 

I consider the models in two separate groups. The first, which I will refer to as Group 1, 

is the class of simpler models that were developed specifically for time series forecasting, which 

includes ARIMA, Exponential Smoothing, Four Theta, Kalman Forecaster, and TBATS. The 

second group, referred to from here on as Group 2, is made up of the more complex models that 

were created for general machine learning tasks, which include regression, random forest, 

recurrent neural network, and Fast Fourier Transform. Additionally, models such as NBEATS, 

NHiTS, and the Temporal Fusion Transformer are very complex but were developed specifically 

for time series forecasting. I chose to consider these as part of the second group, as their 

architecture more similarly aligns with those models rather than the first group’s. 

Additionally, the models can be distinguished by the types of datasets they support. Some 

support the use of covariates, while some support multivariate datasets, and some support both or 

neither. Below is a table showing the capabilities of each model. 

Model Multivariate? Covariates? 

ARIMA  Yes 
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Exponential Smoothing   

Four Theta   

Fast Fourier Transform   

Kalman Forecaster Yes Yes 

TBATS   

Regression Yes Yes 

Random Forest Yes Yes 

Recurrent Neural Network Yes Yes 

NBEATS Yes  

NHiTS Yes  

Temporal Fusion 

Transformer 

Yes Yes 

VARIMA Yes Yes 

Figure 1 

Results- Dataset 1- Simple, Univariate 

 The first dataset I used was a simple car sales dataset. It only had two columns, with the 

month and year in one and the number of car sales in the other. This was monthly data that 

spanned over ten years, so it only consisted of 120 rows. This was a good one to start with 

because it allowed me to get a sense of how the models work and how to implement them 

without worrying about their performance on large, complex datasets. I learned much through 

this process that influenced how I continued my work with other datasets. 

 One conclusion I drew from my results on this dataset was that the models contained in 

Group 1 tended to work as well, if not better, than those in Group 2, and typically at a lower 
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training time. This was a simple dataset, and as a result, the simple models could avoid 

overfitting and create successful predictions. Below, Figure 1 shows the results from ARIMA, a 

model built for time series forecasting, and the results from a recurrent neural network. 

 

ARIMA method: MAPE of 8.9%, RMSE of 0.1029 

 

Recurrent Neural Network: MAPE of 11.8%, RMSE of 0.1293 

Figure 2 
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These results are similar, but ARIMA produced its predictions in one-third of the time 

that it took the Recurrent Neural Network. Below is a table listing the results of every model, as 

well as the training time for each. The Root Mean Square Error is an interpretation of the 

model’s error, and thus, a lower RMSE indicates a more accurate performance26. 

Model Root Mean Square Error Time to Train (seconds) 

ARIMA 0.1029 5 

Exponential Smoothing 0.1237 5 

Four Theta 0.2880 4 

Fast Fourier Transform 0.2957 4 

Kalman Forecaster 0.1932 4 

TBATS 0.0908 75 

Regression 0.1199 4 

Random Forest 0.1596 4 

Recurrent Neural Network 0.1293 15 

NBEATS 0.0984 9 

NHiTS 0.1208 9 

Temporal Fusion Transformer 0.0968 113 

Figure 3 

The best results were from the TBATS model, with an RMSE of 0.0908, but as a 

drawback, it took the second longest to train of any of the methods, at 75 seconds. Because this 

method builds several models to determine which is the best, the process is lengthy and could be 

more impractical on large datasets. The only model that took longer was the Temporal Fusion 

Transformer, at 113 seconds, and this model achieved similarly good results to TBATS, with an 
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RMSE of 0.0968. Finally, the NBEATS model performed the next best, with an RMSE of 0.0984 

at only 9 seconds of training. Below is the resulting graph of the TBATS model. 

 

TBATS- MAPE of 8.8%, RMSE of 0.0908 

Figure 4 

Results- Dataset 2- Simple, multivariate 

 After trying the models on a simple, univariate time series, I next tried them on a simple, 

multivariate time series. In this case, the model must predict more than one variable at a time. 

Not every model supports multivariate datasets, so my options were more limited (see Figure 1). 

The dataset I used was a Darts-provided dataset that mapped both ice cream sales and heater 

sales, monthly over sixteen years. This was still a very small dataset, but it allowed me to test the 

multivariate capabilities of the models. The Group 1 models that supported multivariate datasets, 

like VARIMA and the Kalman Forecaster, produced poor results. Shown below is the graph of 

the VARIMA predictions. 
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Figure 5 

 Much better results were obtained from Group 2 models, including the recurrent neural 

network, regression, temporal fusion transformer (TFT), and NBEATS models. The best results 

achieved from these models were from the recurrent neural network, as shown below in Figure 4, 

which contains the graph for the RNN and the table of all results. 
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Model Root Mean Square Error Time to Train (seconds) 

VARIMA 0.5398 5 

Kalman Forecaster 0.3968 4 

Regression 0.2118 4 

Random Forest 0.4519 5 

Recurrent Neural Network 0.0965 26 

NBEATS 0.1732 11 

NHiTS 0.1806 11 

Temporal Fusion 

Transformer 

0.3707 135 

Figure 6 

Results- Dataset 3- Multi Covariate 

 The third dataset I tested kept track of energy usage in a household. This dataset was a 

huge increase in size, keeping track of energy usage per hour for several years, for a total of 

almost 50,000 rows. Aside from the time and energy usage, this dataset also recorded the 

temperature and precipitation at each hour. These variables acted as covariates, which are 

variables that are known throughout the time series and assist in making predictions. In this case, 

the temperature and precipitation would naturally have an impact on energy usage, making them 

important variables for the model to consider. Again, the usage of covariates limited the choice 

of models (see Figure 1). When working with this much larger dataset, I began to draw new 

conclusions about the effectiveness of the models. Below are the results of the ARIMA and TFT 

models. 
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Figure 7 

 I believe that these more complex, Group 2 models can generalize to bigger and more 

complicated datasets better than the smaller, Group 1 models like ARIMA, which may not be 

complex enough to model these types of datasets. Interestingly, the regression model was able to 
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achieve a very low RMSE score by simply modeling the trend of the data rather than trying to 

account for all data points. The graph for the regression model is shown below. 

 

Figure 8 

Below is a table with all results for this dataset. Note that the time to train has been changed from 

seconds to minutes. 

Model Root Mean Square Error Time to Train (minutes) 

ARIMA 0.1946 2 

Regression 0.1092 0.5 

Recurrent Neural Network 0.1693 8.95 

Temporal Fusion 

Transformer 

0.1068 65.37 

Figure 9 

Accuracy Metrics 

One challenge I faced in this project was finding a good, consistent accuracy metric. I 

utilized many different accuracy metrics, including mean absolute percentage error24, mean 

absolute scaled error25, r2 score28, coefficient of correlation27, and root mean square error26, 
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which were detailed earlier in this paper. The first one I consistently worked with was mean 

absolute percentage error, but this metric has a noticeable bias. It will consistently favor 

predictions that are too low over predictions that are too high, which skewed the results of the 

initial dataset. This observation was backed up by existing research25. Over the next datasets, I 

tried each other metric, and I found the most consistent success with root mean square error. The 

other metrics were either more difficult to implement or interpret, or they produced less 

consistent results. The only downside to the RMSE is that it is dependent on the scale of the data, 

so it required normalization of the series before training. 

Conclusions 

 One large, initial challenge I faced was acquiring good datasets. Publicly available 

datasets of good quality are hard to find online, especially when specifically searching for 

datasets of a particular size or complexity. Some time series that I used proved too unpredictable 

to be analyzed by any of the models, while others were so massive that my computer ran out of 

memory when trying to train on them. Most of the datasets that I ended up successfully training 

on were included as part of the Darts library. Darts has extensive documentation6, which allowed 

me to search through the provided datasets to find ones that matched the type I needed. 

 My initial hypothesis after completing training on the first, simple dataset was that the 

Group 1 models would generally perform better than the Group 2 models. ARIMA and TBATS 

produced better results than the RNN or Temporal Fusion Transformer at a much quicker 

training time (see Figure 3). The more complex models may have simply not had enough data to 

be able to produce as good of predictions. Some models performed very poorly even on the 

simple dataset, such as the Fast Fourier Transform or the random forest. I believe the random 

sampling of data points in the random forest method renders the model more inefficient for time 
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series datasets, where the order of the observations is very important. Another factor separating 

the Group 1 and Group 2 models that could affect results is the structure of the data itself. Time 

series models like ARIMA and Exponential Smoothing use the timestamps as well as lagged 

values of the predicting variable to analyze trends, while models like the RNN only use the 

lagged values. This difference could be important in more time-dependent series versus datasets 

with serial dependence. If the actual time that the data is recorded is more important than the past 

values of that data, then Group 1 models will likely be more effective. 

 However, I also discovered through my work that at times, the more complex machine 

learning models of Group 2 are much more effective at predictions. This was mainly shown 

through the energy dataset, where the ARIMA model performed very poorly compared to the 

RNN and the TFT. While these models require a lot of parameter tuning, their complexity allows 

them to develop very accurate predictions when there is a lot of data. Some simpler models, such 

as ARIMA, are unable to account for seasonal trends, which causes the predictions to be less 

accurate. Therefore, it seems that there is a large benefit to using neural network architectures for 

bigger time series. 

 In the end, if I was given a random dataset and told to choose a model to generate 

predictions for that time series, my choice would be the recurrent neural network. This model 

consistently performed well for every dataset and allowed for a wide variety of dataset structures 

and customizability. This conclusion was supported by the number of modern forecasting 

projects I found that used an LSTM recurrent neural network3,4,5. The temporal fusion 

transformer is another good choice of model, achieving similar results to the recurrent neural 

network in most cases, although it takes the longest to train of any model. NBEATS also proved 

very successful for every dataset. Depending on the series length and forecast window, it may 
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take a long time to build its training window and repeatedly make predictions, but the use of an 

expanding window allows it to make very accurate predictions by the time it has looked at the 

entire series. Finally, while the TBATS model performed the best on the first dataset, this model 

does not allow for covariates or multivariate datasets, limiting its potential uses. These results 

surprised me, especially after running the tests on the first dataset, as my hypothesis that Group 1 

models performed better was proven untrue with testing on more complex datasets. Instead, one 

of the most ubiquitous and commonly used models in machine learning, the RNN, proved to be 

the most effective in my testing, justifying its popularity. 

 Data science is the field I am hoping to go into, so I appreciated the opportunity to gain 

practical experience with time series forecasting. I have learned a great deal about the models, 

processes, metrics, and challenges, which helps me to feel equipped to handle a real-world time 

series analysis task. 
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